PRIFYSGOL

BANGOR

UNIVERSITY

Bangor University Technical Report CS-TR-004-2014

Randomised Multiconnected Environment Generator
Christopher J. Headleand, Gareth Henshall, Llyr Ap Cenydd, William Teahan
20th October 2014

Abstract

This technical report presents a novel method for the generation of randomised, multiconnected environments.
This is released with the intention of providing the AI community with a standard method of generating sandbox
environments for the testing and benchmarking of situated agent algorithms. We will describe the implementation,

and conclude by providing a code library which can be utilised in other projects under a BSD licence.

1 Introduction

When testing and evaluating various situated, embodied
agent algorithms it is often important to place them in
a randomised environment, to evaluate their effectiveness.
These sanitised environments allow us to demonstrate that
the agent is able to operate in an independent manor, in a
dynamic setting. It also removes one possible confounding
variable, notably, the possibility that the algorithm is only
effective in a single environment configuration.

Multiconnected environments (also known as conjunct
environments, non-perfect mazes or labyrinths) are good
candidates for use as a testing environment. This
is because much of the real-world is a multiconnected
environment, including buildings and road networks. In
contrast there are relatively few, real-world examples of
linear environments or perfect mazes.

However, few environment generators in the public
domain generate a truly stochastic environment. In
fact, most public domain algorithms produce a relatively
standardised configuration of rooms connected by
corridors, conforming to a style which could, in principle
be learnt. While the possibility of learning an environment
is unlikely in most cases, we must always consider
external factors, and clearly with embodied agents, the
environmental factor cannot be ignored.

There is also an argument that by conforming to
an standard method of generating test environments,
benchmarking exercises could be better undertaken. We
present our algorithm as a possible candidate.

2 Background

The computer games industry has arguably put the most
research effort into procedurally generated environments.

This is for several reasons, including providing the player
with a unique experience every time they play the
game. However, procedurally generated environments
also have a financial benefit. Once the generator has
been developed, large environments or “open worlds”
can be generated without any additional cost implication
(no additional developers or artists are required). In
contrast, if the environment is manually designed, the cost
implications scale with the size of the environment being
developed.

In our introduction, we discussed a multi-connected
environment comprised of a variety of open spaces and
connections. The games industry typically refers to
this type of environment as a “dungeon”. The Future
Data Lab website [1] provides a list of procedural
various dungeon generation algorithms used in the games
development industry, for which we will provide a brief
overview.

Random Room Placement Described as one of the
most common dungeon generator algorithms. This
places room of random size randomly on a grid
ensuring there are no overlaps. The algorithm then
loops over the rooms creating connections using a
variant of the A* algorithm.

Cellular Automata This method wuses a cellular
automata to create a natural looking cave system.
The main difference between this approach and the
others described is that it avoids the room and
corridors archetype, and instead grows a single,
connected space.

BSP Tree The approach begins with a rectangular,
blank dungeon template, which is then subdivided
into two spaces of non-equal size, then these new
spaces are also subdivided into two, with this process
continuing for a set number of iterations. Within
each of the newly created sub-spaces, a room is

randomly placed, and connections are made between
each of the split rectangles. While this approach
makes a good use of the initial space, the number of
rooms and connections are constrained by the initial
parameters, meaning that the environment is not
truly stochastic.

Procedurally Built This approach tries to model the
way a man-made dungeon may actually be built.
First an initial room is created, from this room a
random number of walls are selected and a door
placed along their edge. On the other side of
this door, a feature is placed, either a room or
a corridor. This grows the environment until a
terminal condition is reached (such as the generation
of a desired number of rooms). One criticism of
this approach is that it makes poor use of space,
and leads to a very linear environment with few
interconnections.

3 The New Algorithm

Our new algorithm begins by generating a number of
voxels in a 2-dimensional grid, the number of voxels
generated being the product of the width and length of
the environment the user specifies. This block of voxels
provides us with a blank environment that we can develop
from.

The next phase involves stamping random room outlines
into the blank environment. Each room is generated at
a random initial z, y coordinate, with a size generated
as a random sample between a minimum and maximum
room size (that is user defined). All the voxels within the
room are given a label of “Room” and given an ID which
represents the order in which the rooms were generated.
The immediate border voxels around the room are labelled
as “Wall” and given a null id. In figure 1 the voxels
labelled as “Room” are displayed in grey, whereas the
voxels labelled as “Wall” have been left black.

Figure 1: The blank environment with a single room,
voxels labelled as Wall are highlighted in Grey.

The algorithm now loops through generating random
rooms. Each new randomly generated room overwrites
any voxel data previously defined. In figure 2 we can see
a second generated room which has overwritten the voxel
data in the bottom left of the first room. We can consider
this to be overlaying new rooms to generate a patchwork
configuration.

This process continues generating rooms randomly within
the blank environment. This provides us with a floor
plan which resembles figure 3. The method provides us
with something which typically fills the majority of the
available space organically, without the need for complex
space filling algorithms, or the resultant predictable
layouts generated by the BSP tree approach.

Figure 2: A second room added to the example
environment. Notice how the bottom left of the first room
has been overwritten.

Figure 3: The result of the random room generation.

Once the room generation algorithm has concluded, the
next phase is the door placement, ensuring that all

rooms within the final environment are accessible to the
agent.

This is achieved by first selecting a random voxel with
the label “Room” and accessing its ID. In figure 4, this
initial voxel has been identified with a black circle, and
we will refer to this as the “focal point”. Then all voxels
which share the same ID as the focal point are instructed
to change their label to “Accessible”.

Four paths are then generated by stepping through the
voxel array in four directions, left, right, up and down.
For each step, the current voxel is sampled, and if its ID
is the same as the ID of the focal point, or if the it’s label
is“Wall”, then the steps in that direction continue. If the
current voxel is unlabelled, then that path is destroyed, in
figure 4, this is represented by the dashed red lines.

Alternatively, if the label of the current sample voxel is
“Room”, then the path has found a new room, and all
voxels with the same room ID as the sampled voxel, have
their label changed to “Accessible”. To determine where
a door should be placed, we simply back track along the
path until we find a voxel or voxels with the label “Wall”
and change their label to “Accessible”. In the figures, all
rooms which have had their label changed to “Accessible”
are coloured blue, and the paths which have created this
route are coloured black.

Figure 4: The first randomly placed focal point, showing
the exploration in four directions. Notice the failed search,
up and right, and the successful searches down and left.

In each new room discovered, a new focal point is spawned
within that room, and the process is repeated, as can be
seen in figures 5 and 6. Eventually, a focal point will
be spawned and no new rooms will be found. This has
been highlighted in figure 6 with two white focal points
which have four red, dashed lines from each. This does
not necessarily mean that there isn’t a connected room (as
with the bottom left focal point), but could simply mean
that the spawned focal point is just not in a position to
discover it.

There are a few approaches which can be taken to solve
this issue. However, the focus of this algorithm is that the

environment is randomised and non-uniform, and a few
missed rooms can add to this effect. However, too many
missed locations could be detrimental to the environment
generation. A compromise solution we implemented was
as follows If a new focal point found no new rooms, it was
re-spawned at a different voxel in the environment with an
“Accessible” label. If both the first and second attempts
failed then that branch of the tree was destroyed.

The search continues until either all the branches
from each generated focal point have been killed or,
alternatively the user can set a search depth to limit the
size of the environment generated.

Figure 5: A second set of focal points are created from the
successful branches of the first focal points.

Figure 6: A second room added to the example
environment, notice how the bottom left of the first room
has been overwritten.

The final process involves iterating through each voxel in
the environment. If the voxel has a label of “Accessible”,
then it is deleted. This removes all the space created by

the rooms and connections. The final result is a multi-
connected environment, constructed out of rooms with
non-uniform layouts and a varying number of connections
such as the example in figure 7. The full process can be
seen in the flow diagram in figure 8.

Figure 7: The final generated environment

4 Conclusion

Our approach generates an environment which is clearly
stochastic, with a large number of possible rooms and
connection configurations. By generating the rooms in
a patchwork manner, we remove the possibility that all
rooms will be rectangular with a standard number of
connecting features. This ensures that all generated
environments are truly random, and eliminates the
possibility that an agent could simply learn a standard
configuration.

4.1 Software

An implementation of the patchwork environment
generator can be downloaded from http://www.project-
amber.co.uk/software /random-environment-generator/.

This page contains a web-playable example of the
environment generator which can be explored in first
person. It also contains a download link for a Unity3D
[2] project which includes the scripts to generate the
environment. The script is released under a standard
BSD licence for use by other projects with attribution.
It is expected that we will later include the Random
environment generator within a larger benchmarking
software, so this release should be considered an
community beta release (V0.1). Updates to the software
will indexed on this page and maintained for legacy
purposes.

An example generated environment and a first person
rendering can be seen in figures 9 and 10.

Generate 2D grid of voxels

v

Counter <
Rooms to Generate

i

Generate Wall
Perimeter of Room
ID = Null

Label = “Wall”

i

Generate Room
Size = Random
Position = Random -
ID = counter
Label = “Room”

Select random voxel with
label == “Room”
> Set as Focal Point (FP)

Set label of all voxels with the
same id as the FP to “Accessible”

v

From focal point move
one step in 4 headings
(U,D,L,R)

v

False
Room Found?

Set label of all voxels in new
Room, and all voxels between
FP and new room to “Accessible”

v

‘ Create new FP in discovered room }7

4>{ Destroy branch ‘
v

All branches destroyed?

Delete all voxels with
label == “Accessible”

Figure 8: The algorithm as a flow diagram

Figure 9: An example environment generated with the
new algorithm

4.2 3D Rendering

As with any voxel-based algorithm draw calls can be high,
especially in environments which utilise dynamic lighting.
There are solutions to this issue, such as implementing
occlusion culling, but this may not be suitable for all
applications. Another option is to merge the voxels
to create a single geometry, or replace large areas of
connected voxels prefabricated units.

Figure 10:
environment

A first person rendering from inside the

However, it should be noted that most modern game

engines have built-in optimisation procedures which solve
most of these issues without the need for a further
computational step. In large environments that we
experimented with (22500 initial voxels), the Unity engine
was able to render to the player at between 9 and 15 draw
calls per frame (without dynamic lighting).

5 Acknowledgements

Chris Headleand and Gareth Henshall would like to thank
HPC Wales for the ongoing support of their research
activities.

References

1] F. D. Lab. (Oct. 2014). Procedural dungeon
generation, [Online]. Available: http : / / www .
futuredatalab.com/proceduraldungeon/.

[2] David Helgason (CEO). (2004). Unity website,
[Online]. Available: http://unity3d.com/.

