Module IES-2012:
Analogue Electronics

Module Facts

Run by School of Computer Science and Electronic Engineering

10 Credits or 5 ECTS Credits

Semester 2

Organiser: Dr Julian Burt

Overall aims and purpose

This module aims to provide an introduction to analogue electronic instrumentation circuits and techniques to improve performance in analogue amplifier circuits.

Course content

• Diode and bipolar transistor models and equivalent circuits • Bipolar transistor amplifier circuits: Common emitter, Common Base, Common Collector • Multi-stage amplifiers: Cascode amplifier, Class B driver, Operational amplifier • Introduction to instrumentation circuits and components: Amplifier characteristics, negative feedback. Operational amplifier circuits, Comparators, Analogue to digital conversion. • Introduction to signal conditioning: Filters properties, Passive filter design, and Active filter design. • Elementary signal capture methods: Bridge circuits, Differential amplifiers, Oscillators and resonance. • Instrumentation circuit design issues: Design rules, CAD software, Component technologies and properties. Interference and EMC, Thermal management, Power supply considerations.

Learning outcomes mapped to assessment criteria

  threshold

40%

good

60%

excellent

70%

Have a detailed understanding bipolar transistor amplifier circuits and the physical and environmental parameters that influence circuit operation.

Ability to identify biasing arrangements and quantify operating points of circuits. Ability to quantify the operation, gain and frequency response of an ampifier circuit. Ability to design simple bipolar transistor amplifiers. Ability to quantitatively analyse the gain, input and output impedances of a circuit. Ability to outline the advantages and disadvantages of different amplifier configurations. Ability to design simple multi-stage amplifiers Ability to design a wide range of bipolar transistor amplifier circuits to a given specification. Demonstrate the use of different circuit configurations to overcome physical or environmental changes

Have a detailed understanding of the use of analogue circuitry for signal conditioning based around signal amplification and filtering concepts.

Ability to analyse basic filter and amplifying instrumentation circuits. Ability to recognise conceptual circuit configurations. Ability to design a specific filter or amplifier circuit from a given specification Ability to evaluate a given problem and derive an appropriate filter and or amplifier specification justifying choices made in the design.

Analyse a broad range of analogue circuits based primarily around operational amplifiers. Expected to be able to design simple instrumentation systems.

Ability to identify conceptual circuit configurations and describe the basic operation of circuits containing operational amplifiers. An elementary quantitative analysis of the circuit should be demonstrated. Ability to recognise conceptual circuit configurations Ability to outline the operation of a simple operational amplifier circuit. Ability to quantitatively analyse in detail the operation of a circuit containing operational amplifiers and explain why certain circuit configurations have been chosen. Ability to outline the design of an analogue circuit using recognised circuit configurations and building blocks. Ability to design a wide range of analogue circuits to a given specification. Demonstrate the use of different circuit configurations and building blocks to meet the specification

Assessment Methods

Type Name Description Weight
Closed Book Examination 100

Teaching and Learning Strategy

Hours
Lecture

1 hour lectures, twice weekly over 12 weeks

24
Private study 76

Transferable skills

  • Self-Management - Able to work unsupervised in an efficient, punctual and structured manner. To examine the outcomes of tasks and events, and judge levels of quality and importance
  • Exploring - Able to investigate, research and consider alternatives
  • Critical analysis & Problem Solving - Able to deconstruct and analyse problems or complex situations. To find solutions to problems through analyses and exploration of all possibilities using appropriate methods, rescources and creativity.

Subject specific skills

  • Apply underpinning concepts and ideas of engineering;
  • Apply knowledge and understanding of the specialist cognate area of electronic engineering in an international context;
  • Apply knowledge and understanding of the specialist cognate area of computer systems engineering in safety-critical areas;
  • Assess and choose optimal methods and approaches for the specification, design, implementation and evaluation of engineering solutions, especially ones that include embedded microprocessors
  • Solve problems logically and systematically;
  • Assess and choose optimal methods and approaches for the specification, design, implementation and evaluation of engineering solutions.

Pre- and Co-requisite Modules

Courses including this module

Compulsory in courses: