Modiwl OSX-4000:
Marine Ecology Skills
Marine Ecology Skills 2022-23
OSX-4000
2022-23
School of Ocean Sciences
Module - Semester 1
20 credits
Module Organiser:
Stuart Jenkins
Overview
The module provides an introduction to the scientific method and an overview of approaches to experimental and survey sampling design, data analysis and interpretation and report writing. Learning will be enhanced through ship-based sampling and laboratory analysis of samples, and students will collaborate to produce a dataset which they will independently analyse to practice statistical and data communication skills. Students will learn about and practice scientific writing and develop introductory map making skills. More specifically the module includes:
- A description of the scientific process with a particular focus on null hypothesis significance testing and revising univariate statistical tests.
- Ideas surrounding statistical sampling design from an observational and empirical perspective
- Data exploration and univariate analysis in the statistical programming environment R
- Introduction to multivariate statistical methods commonly used by marine ecologists and working in the software Primer
- Ship-based benthic grab sampling
- Taxonomic identification of benthic organisms and laboratory processing to collaboratively produce a class dataset
- Independent analysis of the class dataset
- Scientific research and report writing skills
- Mapping and spatial analysis techniques in ArcGIS
Assessment Strategy
-threshold --D A threshold student will have a basic knowledge of the scientific method and hypothesis driven framework, a basic ability to identify benthic organisms as well as a basic ability to quantitatively manipulate and investigate datasets using a range of fundamental approaches using appropriate computer software (R, Primer and ArcGIS). The student will be able to apply and interpret statistical tests and create an evidence based scientific reporting summarizing their work.
-good --B A good student will have a thorough understanding of the scientific method and hypothesis driven framework, and a solid ability to identify benthic organisms as well as be competent in quantitatively manipulating datasets using a range of fundamental mathematical tools, have a good ability to interpret datasets and be able to confidently use and interpret statistical tests using appropriate computer software. The student will be able to concisely present and interpret their analytical findings in the context of the wider literature to create a compelling evidence based scientific report summarizing their work.
-excellent --A An excellent student will have a high-level understanding of the scientific method and ability to present testable hypotheses. They will have advanced benthic taxonomy identification skills, as well as have a sophisticated knowledge of quantitatively manipulating datasets using a range of fundamental mathematical tools. Their ability to interpret datasets will be advanced and they be highly skilled in the use and interpretation of statistical tests using appropriate computer software. The student will create a scientific report that has high level understanding of the ecological concepts, as well as a mature interpretation of the results presenting them in the context of wider literature. Their written and presentation style will be highly skilled, concise, clear and compelling.
Learning Outcomes
- Analyse:
- apply univariate and multivariate methods to a multi-species dataset combined with environmental driver data
- Application:
- ship-based biological data collection (benthic grab samples)
- laboratory based taxonomic identification of benthic grab samples
- programming for data exploration and univariate statistical methods in R
- multivariate methods for community analyses in Primer
- acquire the fundamentals of GIS and apply these to analyze spatial data using ArcGIS
- Comprehension:
- explain situations in which the following univariate statistical tests would be used: t-tests, Mann-Whitney, ANOVA, Kruskal-Wallis, correlation, regression
- explain the basic principles underlying multivariate methods including SIMPER, ANOSIM and MDS.
- summarize key findings from independent desk based literature search on the environmental drivers of variability in benthic community structure
- Knowledge:
- recognise sampling design issues (like statistical power and pseudo-replication) that relate to large-scale biological surveys, to experimental field studies and controlled laboratory studies
- identify a variety of common UK benthic organisms with the correct nomenclature using taxonomic keys and identification methods
- demonstrate an understanding of the scientific method from a null hypothesis significance testing framework
- Synthesis: - organize key findings from independent desk-based research and data analysis to generate a benthic report written in IMRAD (introduction, methods, results and discussion) format
Assessment method
Coursework
Assessment type
Crynodol
Description
A scientific report (standard IMRAD structure) outlining an investigation into the effect of depth and other environmental drivers on benthic community composition
Weighting
70%
Due date
09/01/2023
Assessment method
Coursework
Assessment type
Crynodol
Description
Predictive modelling GIS Exercise
Weighting
30%
Due date
02/12/2022