Modiwl OSX-3006:
Sediment Dynamics
Sediment Dynamics 2023-24
OSX-3006
2023-24
School of Ocean Sciences
Module - Semester 2
20 credits
Module Organiser:
Martin Austin
Overview
This course provides an introduction to the dynamics of entrainment, transport and deposition of non-cohesive and cohesive sediments in coastal waters. The topics covered include:
- physical mechanisms of sediment transport, and physico-chemical controls of sedimentation;
- tidal and wave boundary layers;
- sediment transport in steady and oscillatory flows;
- initiation of motion and shields criterion;
- bed load motion;
- sediment entrainment and suspension;
- bed forms in steady and oscillatory flow;
- measurement and estimation of sediment transport rates;
- geotechnical and hydraulic interpretation of sediments textures and structures;
- origin and nature of bed forms, ripples, dunes, bars;
- density currents and avalanches: low density turbidity currents versus avalanches.
You will spend time in the laboratory observing and measuring sediment transport, and learning the basic principles and methods of sampling sediment in the marine environment.
Learning Outcomes
- Be able to quantifiably describe the formation and evolution of sedimentary bedform features, and understand their contribution to wider sediment transport and seabed dynamics.
- Be able to use Matlab or similar software to manipulate and analyse numerical datasets to provide quantitative answers to sediment transport problems
- Draw quantitative conclusions about sediment transport based on the analysis of given field data sets
- Have demonstrable knowledge of the physical, chemical and biological factors that control cohesion and flocculation processes.
- Understand the concepts of sediment entrainment leading to bed load sediment transport and the progression to sediment suspension due to the balance of turbulent upthrust and sediment settling.
- Understand the fluid-seabed interactions that generate the benthic boundary layer, the subsequent form of the boundary layer and the resultant bed shear stresses under steady and oscillatory flows.
Assessment type
Summative
Weighting
20%
Assessment type
Summative
Weighting
5%
Assessment type
Summative
Weighting
50%
Assessment type
Summative
Weighting
25%