# Module BIC-0002:Mathematics 1 (Pure)

### Module Facts

Run by Marketing: Bangor International College

10 Credits or 5 ECTS Credits

Semester 1

Organiser: Ms Jane Keane

### Overall aims and purpose

1) To introduce students from a range of backgrounds to the mathematical knowledge and aptitude that they will be expected to deploy and demonstrate in their degree studies 2) To ensure that students understand and can use appropriate mathematical language and understand mathematical notation, conventions and units 3) To prepare students for the development of mathematical applications in science, engineering and computer science

### Course content

This module provides the appropriate foundation in mathematical skills to enable students to be successful in their planned undergraduate studies in the fields of science, engineering and computer science. Many students will come from educational systems where there has been a strong emphasis placed on mathematics but it cannot be assumed that this will apply more generally. It is important therefore that the module ensures the strong level of mathematics required to cope with level 4 and beyond in their science, engineering or computer science first degree programme. The main topics covered are: a) Algebra: Review of basic work. Identities. Equations and inequality. Quadratic equations, quadratic functions. Polynomials, remainder theorem, principle of undetermined coefficients. Binomial theorem for positive integers. Rational functions. Simultaneous equations (at least one linear). Curve sketching. Indices and logarithms. Arithmetic and geometric series. b) Differential Calculus: Functions and limits. Differentiation of algebraic functions, chain rule. Logarithmic and exponential functions. Derivative as a rate of change. Tangents, normal. Turning points. Integration as the inverse of differentiation; representation as an area. c) Set Theory and Probability: Algebra of sets, Venn diagrams. Permutations. Relative frequency and probability. Samples. Mutual exclusivity. Laws of probability. d) Experimental Laws: Linear and non-linear relations.

### Assessment Criteria

#### good

Student has demonstrated sound, basic knowledge and technique in tackling many of the topics covered in the module and so shown clear suitability for undergraduate degree studies.

#### excellent

Student has performed effectively in all aspects of the module and has demonstrated a high level of suitability for and can proceed with confidence to undergraduate degree

#### threshold

Student has coped sufficiently well with some aspects of the module to achieve the minimum level of pass to allow progression onto an undergraduate degree programme.

### Learning outcomes

1. Manipulate mathematical expressions
1. Apply mathematical methods and techniques to problem solving at a foundation level
1. Demonstrate an ability to interpret in mathematical terms verbal, graphical and tabular information
1. Demonstrate an understanding of mathematical terminology, notation, conventions and units
1. Make inferences from their interpretation of mathematical information

### Assessment Methods

Type Name Description Weight
test 1 15
test 2 15
final exam 70

### Teaching and Learning Strategy

Hours
Private study

Students will have access to online resources and additional tasks set as homework or groupwork. Tutors will be available through blackboard and in the college to support. Students will also be encouraged to form peer to peer study groups

50
Practical classes and workshops

The tutors in the college aim to provide a programme of study that covers relevant content material at NQF level 3.

The college uses a wide variety of methods in its teaching delivery. Students will be given an opportunity to develop skills through class based lessons and tutorials, as well as other interactive methods including use of technology and student directed learning. There is an explicit attempt to raise student awareness of the need to use independent study time. We focus on the concept of independent learning from the induction stage and this is reinforced in all classes.

The lessons are supported through the English language module providing an opportunity for students to build confidence and competence in using the sessions to achieve the learning outcomes of the course.

50

### Transferable skills

• Literacy - Proficiency in reading and writing through a variety of media
• Numeracy - Proficiency in using numbers at appropriate levels of accuracy
• Computer Literacy - Proficiency in using a varied range of computer software
• Self-Management - Able to work unsupervised in an efficient, punctual and structured manner. To examine the outcomes of tasks and events, and judge levels of quality and importance
• Critical analysis & Problem Solving - Able to deconstruct and analyse problems or complex situations. To find solutions to problems through analyses and exploration of all possibilities using appropriate methods, rescources and creativity.

### Subject specific skills

1. Demonstrate an understanding and ability to apply concepts, principles and theories underpinning mathematics to relevant situations
2. Develop an awareness of the relevance of physics and mathematics to the field of engineering
3. Demonstrate numeracy skills required as a basis for future studies in Computing and Engineering programmes

Core Text Book