Module FXX-4113:
Advanced Chemical Techniques

Module Facts

Run by School of Natural Sciences

10 Credits or 5 ECTS Credits

Semester 1

Organiser: Prof Bela Paizs

Overall aims and purpose

  1. To give student experience of modern advanced chemical techniques (e.g. NMR, MS, XRD).
  2. To give student experience of statistical data analysis in an analytical setting.

Course content

The course contains three selected, modern chemistry techniques practicals (NMR, Mass spectrometry (MS) and x-ray diffraction (XRD) coupled with a statistics / data analysis workshop. The NMR practical focuses on the acquisition and analysis of 1H data and analysis of 29Si and 11B data. The MS practical focuses on the use GCMS and LCMS in the analysis of complex mixtures. The X-ray diffraction practical focuses on traditional of X-ray diffraction for solid state materials.

Course Team: Dr V Thoss (3 x 4 hrs workshops), Dr J Thomas (1x2h, + 1x1 hr lecture), Prof B Paizs (1 lecture)

RESOURCE IMPLICATIONS ESSENTIAL READING - None RECOMMENDED 1. Chemical Analysis - Modern Instrumentation, Methods and Techniques. F. Rouessac and A, Rouessac 2007 2. Spectrometric Identification of Organic Compounds. by Silverstein, Bassler and Morrill (Wiley) 3. The Art and Science of Chemical Analysis by Enke (Wiley) Most recent edition of this as it is regularly updated. SPECIFIC RESOURCE IMPLICATIONS FOR STUDENTS - None

Assessment Criteria

excellent

a) Problems of a familiar and unfamiliar nature are solved with efficiency and accuracy; problem-solving procedures are adjusted to the nature of the problem. b) Experimental work is exemplary and shows a through analysis and appraisal of experimental results, with appropriate suggestions for improvement. c) Performance in transferable skills is generally very good.

For students entering year 2 (level 5) after September 1st 2013 or MRes students, the threshold criteria are set as follows: Knowledge base is extensive and extends well beyond the work covered in the assignment; conceptual understanding is outstanding. Experimental work is exemplary and shows a thorough analysis and appraisal of experimental results, with appropriate suggestions for improvement. Problems of a familiar and unfamiliar nature are solved with efficiency and accuracy; problem-solving procedures are adjusted to the nature of the problem. Performance in transferable skills is generally very good.

threshold

a) Problems of a routine nature are generally adequately solved; b) Standard laboratory experiments are usually carried out with reasonable success though significance and limitations of experimental data and/or observations may not be fully recognised; c) Transferable skills are at a basic level.

For students entering year 2 (level 5) after September 1st 2013 or MRes students, the threshold criteria are set as follows: Knowledge base covers all essential aspects of subject matter dealt with in the assignment; conceptual understanding is acceptable.Experimental work is carried out in a reliable manner, with an appreciation of data analysis shown in the write-up. Problems of a familiar and unfamiliar nature are solved and solutions are acceptable. Performance in transferable skills is sound.

good

a) Problems of a familiar and unfamiliar nature are solved in a logical manner; solutions are generally correct and acceptable. b) Experimental work is carried out in a reliable and efficient manner, with a good appreciation of data analysis shown in write-ups. c) Performance in transferable skills is sound and shows no significant deficiencies.

For students entering year 2 (level 5) after September 1st 2013 or MRes students, the threshold criteria are set as follows: Knowledge base covers all essential aspects of subject matter dealt with in the assignment and shows good evidence of enquiry beyond this. Conceptual understanding is good. Experimental work is carried out in a reliable and efficient manner, with a good appreciation of data analysis shown in write-ups. Problems of a familiar and unfamiliar nature are solved in a logical manner; solutions are generally correct and acceptable. Performance in transferable skills is sound and shows no significant deficiencies.

Learning outcomes

  1. Students should be able to demonstrate and apply a critical understanding of selected advanced chemical techniques.

  2. Students should be able to critically evaluate statistical data as applied to analytical techniques.

Assessment Methods

Type Name Description Weight
Mass Spectrometry assignment 25
Advanced NMR assignment 25
XRD & Solid state synthesis assignment 25
Statistics & VAM 25

Teaching and Learning Strategy

Hours
Laboratory

Laboratory based work focusing on modern advanced chemical techniques (e.g. NMR, MS, XRD).

51
Lecture

Advanced pre lab lectures on the topics NMR, MS & XRD.

3
Workshop

Statistical workshop - (Based in computer lab)

21
Private study

Reading and write-up time for stats, NMR, MS & XRD assignments.

25

Transferable skills

  • Literacy - Proficiency in reading and writing through a variety of media
  • Numeracy - Proficiency in using numbers at appropriate levels of accuracy
  • Critical analysis & Problem Solving - Able to deconstruct and analyse problems or complex situations. To find solutions to problems through analyses and exploration of all possibilities using appropriate methods, rescources and creativity.

Subject specific skills

  • CC3 Skills in the practical application of theory using computational methodology and models
  • CC4 The ability to recognise and analyse problems and plan strategies for their solution
  • CC5 Skills in the generation, evaluation, interpretation and synthesis of chemical information and data
  • CC6 Skills in communicating scientific material and arguments
  • CC7 Information technology and data-processing skills, relating to chemical information and data.
  • CC8 The ability to adapt and apply methodology to the solution of unfamiliar problems
  • CP1 An ability to determine hazards associated with carrying out chemical experiments in terms of chemical toxicity, chemical stability and chemical reactivity and be able to find information to enable effective risk assessments to be carried out
  • CP2 Skills to handle chemicals safely and carry out experiments and chemical reactions in asafe manner, based on effective risk assessments
  • CP3 Skills required for the conduct of documented laboratory procedures involved in synthesis and analysis, in relation to both inorganic and organic systems
  • CP4 Skills in the monitoring, by observation and measurement, of chemical properties, events or changes, and the systematic and reliable recording and documentation thereof
  • CP5 Skills in the operation of standard chemical instrumentation
  • CP7 The ability to interpret and explain the limits of accuracy of their own experimental data in terms of significance and underlying theory
  • CP11 The ability to use an understanding of the uncertainty of experimental data to inform the planning of future work
  • PS2 Skills in the employment of common conventions and standards in scientific writing, data presentation, and referencing literature
  • PS3 Problem-solving skills, relating to qualitative and quantitative information
  • PS4 Numeracy and mathematical skills, including handling data, algebra, functions, trigonometry, calculus, vectors and complex numbers, alongside error analysis, order-of-magnitude estimations, systematic use of scientific units and different types of data presentation
  • PS5 Information location and retrieval skills, in relation to primary and secondary information sources, and the ability to assess the quality of information accessed
  • PS7 Basic interpersonal skills, relating to the ability to interact with other people and to engage in teamworking
  • PS8 Time management and organisational skills, as evidenced by the ability to plan and implement efficient and effective ways of working
  • PS11 Problem-solving skills including the demonstration of self-direction, initiative and originality
  • PS6 Information technology skills which support the location, management, processing, analysis and presentation of scientific information
  • PS15 The ability to think critically in the context of data analysis and experimental design
  • SK2 Demonstrate a systematic understanding of fundamental physicochemical principles with the ability to apply that knowledge to the solution of theoretical and practical problems
  • SK3 Gain knowledge of a range of inorganic and organic materials
  • SK4 Demonstrate, with supporting evidence, their understanding of synthesis, including related isolation, purification and characterisation techniques
  • SK5 Demonstrate an understanding of the qualitative and quantitative aspects of chemical metrology and the importance of traceability
  • SK6 Develop an awareness of issues within chemistry that overlap with other related subjects
  • SK8 Develop an understanding of safe working practice, in terms of managing chemical toxicity, chemical stability andchemical reactivity, through knowledge-based risk assessments
  • SK9 Read and engage with scientific literature
  • CC1 the ability to demonstrate knowledge and understanding of essential facts,concepts,principles and theories relating to theSubject areasCovered in theirProgramme
  • CC2 the ability to applysuch knowledge and understanding to thesolution of qualitative and quantitativeProblems that are mostly of a familiar nature

Courses including this module

Compulsory in courses: