Module OSX-3006:
Sediment Dynamics
Module Facts
Run by School of Ocean Sciences
20.000 Credits or 10.000 ECTS Credits
Semester 2
Organiser: Dr Martin Austin
Overall aims and purpose
- To introduce the basic physical processes involved in sediment transport in the marine environment, including the hydrodynamic (boundary layer) processes associated with currents and waves;
- Examine differences between the behaviour of coarse and fine sediment in relation to entrainment, deposition and transport (including turbidity currents);
- Explain the important role of bed forms (ripples, dunes, bars) in wave and current flows;
- Explain practical approaches for the measurement of sediment transport rates in the sea, and simplified modelling approaches for the estimation of sediment transport rates.
The course will be taught using a combination of lectures, practical sessions, computer exercises and workshops/seminars.
Course content
This course provides an introduction to the dynamics of entrainment, transport and deposition of non-cohesive and cohesive sediments in coastal waters. The topics covered include:
- physical mechanisms of sediment transport, and physico-chemical controls of sedimentation;
- tidal and wave boundary layers;
- sediment transport in steady and oscillatory flows;
- initiation of motion and shields criterion;
- bed load motion;
- sediment entrainment and suspension;
- bed forms in steady and oscillatory flow;
- measurement and estimation of sediment transport rates;
- geotechnical and hydraulic interpretation of sediments textures and structures;
- origin and nature of bed forms, ripples, dunes, bars;
- density currents and avalanches: low density turbidity currents versus avalanches.
You will spend time in the laboratory observing and measuring sediment transport, and learning the basic principles and methods of sampling sediment in the marine environment.
Assessment Criteria
threshold
Basic understanding of knowledge (subject-specific theories, concepts and principles) of the processes of sediment dynamics based on the directly taught programme; Basic ability to define and solve numerical problems using appropriate techniques, and to interpret the results.
good
Good understanding of knowledge (subject-specific theories, concepts and principles) of the processes of sediment dynamics based on the directly taught programme; Good ability to define and solve numerical problems using appropriate techniques, and to interpret the results.
excellent
Thorough understanding of knowledge (subject-specific theories, concepts and principles) of the processes of sediment dynamics based on the directly taught programme; Thorough ability to define and solve numerical problems using appropriate techniques, and to interpret the results.
Learning outcomes
-
Understand the fluid-seabed interactions that generate the benthic boundary layer, the subsequent form of the boundary layer and the resultant bed shear stresses under steady and oscillatory flows.
-
Be able to quantifiably describe the formation and evolution of sedimentary bedform features, and understand their contribution to wider sediment transport and seabed dynamics.
-
Draw quantitative conclusions about sediment transport based on the analysis of given field data sets
-
Understand the concepts of sediment entrainment leading to bed load sediment transport and the progression to sediment suspension due to the balance of turbulent upthrust and sediment settling.
-
Be able to use Matlab or similar software to manipulate and analyse numerical datasets to provide quantitative answers to sediment transport problems
-
Have demonstrable knowledge of the physical, chemical and biological factors that control cohesion and flocculation processes.
Assessment Methods
Type | Name | Description | Weight |
---|---|---|---|
Sedimentary Bedforms (JB) | 20.00 | ||
Particulate Density Currents (JB) | 5.00 | ||
24-hour take home assignment (MA + JB) | 50.00 | ||
Awel y Mor Cable Route | 25.00 |
Teaching and Learning Strategy
Hours | ||
---|---|---|
Lecture | 24 lectures/tutorials/in-class demonstrations, duration 1 hour, 3 times per week |
24 |
Practical classes and workshops | 4 practicals on benthic boundary layers, instrumentation, sediment settling and experimental bed form dynamics; 2 hours each |
6 |
Tutorial | 5 drop-in help sessions providing support on course materials, 1 hour each |
5 |
Private study | During 'Private Study', students work with field and laboratory data. They tackle two of the assessments (practicals) with reference to reading material and own practical/field data on experimental bed form dynamics and tidal rhythmites. The two remaining assessments (problem sheets) require reference to wider reading linked to material in the course handouts. |
157 |
Seminar | Q&A type sessions with student groups and instructors to solve sedimentary problems. |
8 |
Transferable skills
- Numeracy - Proficiency in using numbers at appropriate levels of accuracy
- Computer Literacy - Proficiency in using a varied range of computer software
- Self-Management - Able to work unsupervised in an efficient, punctual and structured manner. To examine the outcomes of tasks and events, and judge levels of quality and importance
- Exploring - Able to investigate, research and consider alternatives
- Information retrieval - Able to access different and multiple sources of information
- Critical analysis & Problem Solving - Able to deconstruct and analyse problems or complex situations. To find solutions to problems through analyses and exploration of all possibilities using appropriate methods, rescources and creativity.
- Presentation - Able to clearly present information and explanations to an audience. Through the written or oral mode of communication accurately and concisely.
- Teamwork - Able to constructively cooperate with others on a common task, and/or be part of a day-to-day working team
- Argument - Able to put forward, debate and justify an opinion or a course of action, with an individual or in a wider group setting
Resources
Talis Reading list
http://readinglists.bangor.ac.uk/modules/osx-3006.htmlCourses including this module
Compulsory in courses:
- F650: BSC Geological Oceanography year 3 (BSC/GEO)
- F62F: BSc Geological Oceanography year 3 (BSC/GEOF)
- 8S54: BSc Geological Oceanography (with International Experience) year 4 (BSC/GEOIE)
- F7F6: BSc Ocean and Geophysics year 3 (BSC/OGP)
- F652: MSci Geological Oceanography year 3 (MSCI/GO)
- F734: MSci Physical Oceanography year 3 (MSCI/PO)
Optional in courses:
- F841: BSC Coastal Geography year 3 (BSC/COASTG)
- F842: BSc Marine Geography year 3 (BSC/MARG)
- CF17: BSC Marine Biology/Oceanography year 3 (BSC/MBO)
- CF1P: BSc Marine Biology and Oceanography with Placement Year year 4 (BSC/MBOP)
- F700: BSC Ocean Science year 3 (BSC/OS)
- F70P: BSc Ocean Sciences with Placement Year year 4 (BSC/OSP)
- F840: BSc Physical Geography and Oceanography year 3 (BSC/PGO)
- F84P: BSc Physical Geography and Oceanography with Placement Year year 4 (BSC/PGOP)
- F712: MSci Marine Biology and Oceanography year 3 (MSCI/MBO)
- F71P: MSci Marine Biology and Oceanography with Placement Year year 4 (MSCI/MBOP)